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Simultaneous steady forced and free convective flow past a heated or cooled body
in a semi-infinite porous medium subject to the Darcy–Boussinesq approximation is
treated analytically and numerically. A correction term is derived in terms of the
Rayleigh (Ra) and Péclet (Pe) numbers for the velocity and temperature fields far
from the body; this is subsequently implemented in a numerical treatment, using
finite-difference techniques in elliptical coordinates, for 1 6 Pe 6 100 and |Ra| 6 103.
Flow separation is observed for both heating and cooling, perhaps surprisingly so
for the former case since the flow near the plate is being accelerated by comparison
with the forced convection case. A simple analogy with inviscid flow theory serves
to illustrate the manner in which separation eddies are formed for both heating and
cooling cases.

1. Introduction
Fundamental studies related to thermal convection in porous media have increased

significantly during recent years. The requirement for energy, the necessity to develop
effective technologies for nuclear waste management, transpiration cooling, separation
processes in chemical industries, building thermal insulations, winding structure for
high-power density in electric machines, packed-bed catalytic reactors and numerous
other applications have led to a considerable interest in convective heat transport
through porous media, especially in the last three decades. The same processes are
also found naturally within living organisms, such as in biological membranes and
filters and the flow of blood or other body fluids. The abundance of these phenomena
is due to the fact that the fluid trapped in the pores of the substance can be subjected
to vaporization, condensation or to migration due to applied pressure gradients. Some
of the early descriptions and results in this field can be found in the comprehensive
reviews provided by Bejan (1984) and Kakac et al. (1991), and in the monographs by
Nield & Bejan (1992) and Nakayama (1995).

The problem of thermal convection in porous media is mostly relevant to free
convection flows from vertical and horizontal semi-infinite flat plates, which have
become classical heat transfer problems in porous media. Cheng & Chang (1976)
were probably the first to consider the free convection from a horizontal surface
embedded in a porous medium, and much work has been done on this problem since.
However, very little work exists in the literature on free convective heat transfer due
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to a finite-length vertical or horizontal surface. Using the scale analysis developed
by Bejan (1984), Kimura, Bejan & Pop (1985) have studied analytically the heat
and fluid flow features of the free convection boundary layer near a horizontal cold
finite-length plate facing upwards and immersed in a porous medium. The boundary
layer features were then confirmed in the Rayleigh number range 100 6 Ra 6 700
by numerical solutions of the complete partial differential equations. Later, Merkin
& Needham (1987) considered the boundary-layer natural convection above a heated
short vertical wall embedded in a porous medium. It was shown that the boundary
layers on each side of the wall merge to form a buoyant wake above the wall and that
far downstream the flow is described by the two-dimensional wake solution. Most
recently, Higuera & Weidman (1995) have considered flow in the free convection
boundary layer below a downward-facing horizontal infinite strip and circular disk,
subject to both constant temperature and constant heat flux conditions, in a porous
medium; the analogous problem for the boundary-layer flow above a horizontal
circular disk was treated earlier by Merkin & Pop (1989).

Despite its importance, few papers have treated the problem of combined forced
and free convection (mixed convection) from a horizontal surface in a porous medium.
As is known, thermal buoyancy effects can have a significant effect on the flow and
heat transfer from a surface, either when the flow velocities are low or the temperature
difference between the surface and external flow is high. Cheng (1977), Prasad, Lai &
Kulacki (1988), Lai & Kulacki (1990), Aldoss, Chen & Armaly (1993 a, b; 1994) and
Aldoss, Jarrah & Duwari (1994) considered some aspects of this problem, such as the
effect of a variable wall temperature distribution and mass flux (suction/injection)
on the flow and heat transfer characteristics due to a surface embedded in a porous
medium of infinite extent. On the other hand, Oosthuizen (1988) has investigated
numerically mixed convective heat transfer due to a heated horizontal plate of finite
length in a porous medium, mounted near an impermeable adiabatic horizontal
surface.

The main purpose of this paper is to investigate mixed convective flow past the
upper surface of a hot or cold body which is embedded in a fluid-saturated porous
medium. It should be mentioned that the flow situation to be considered in this
paper is analogous to the one studied by Robertson, Seinfeld & Leal (1973) for
the classical viscous (non-porous) medium. Physically, this problem is motivated by
its practical application in electronic cooling systems and geothermal areas which
consist of troughs of volcanic debris or other heat sources; furthermore, the problem
has relevance to the attempts to identify a geological repository for the storage of
nuclear waste. First, we formulate the full two-dimensional time-independent prob-
lem for arbitrary body shape; then, for reasons of analytical expediency, bodies
which are symmetric about the horizontal axis with antisymmetric temperature dis-
tributions are considered. On the way to providing a numerical solution to the full
momentum and energy equations subject to the Darcy–Boussinesq approximation
for a wide range of Rayleigh (Ra) and Péclet (Pe) numbers in the case of a finite
horizontal plate, an analytical solution is derived for the forced convection limit
(Ra = 0), which is subsequently used to verify the numerical code. Furthermore, a
correction term for the temperature and streamfunction at infinity is also derived
in order to improve the imposed boundary conditions there; this proves beneficial
to the numerical method used, particularly for the case when the plate is cooled.
For high enough values of Ra, flow separation is observed to occur, and heuristic
considerations are given in order to clarify the mechanism for the onset of this
separation.
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Figure 1. Sketch of the geometry for mixed convection.

2. Formulation
A schematic of the physical model and coordinate system is shown in figure 1.

Consider a body B with boundary C of characteristic length l which is embedded in
an infinite expanse of fluid-saturated porous medium at temperature T∞, and assume
that a uniform free stream with a velocity U∞ is flowing parallel to the horizontal
axis. The characteristic temperature of the body is taken to be T∞+∆T , with ∆T > 0
for a heated body and ∆T < 0 for a cold body. The buoyancy force associated with
the temperature ∆T induces a streamwise pressure gradient which interacts with the
forced convection flow adjacent to the plate. The pressure distribution across the flow
is, however, not affected by the (mainly horizontal) motion of the fluid. Under this
observation and the Darcy–Boussinesq approximation, the equations describing the
steady motion can be written in non-dimensional form as

∇ · q = 0. (2.1a)

q = −∇p+
Ra

Pe
θj , (2.1b)

q · ∇θ =
1

Pe
∇2θ. (2.1c)

where q is the velocity vector, p is the pressure, θ is the temperature, j is the unit
vector in the y-direction, ∇2 is the Laplacian in regular Cartesian coordinates (x, y),
and Ra and Pe are, respectively, the Rayleigh and Péclet numbers given by

Ra =
gβKl∆T

αν
, Pe =

U∞l

α
. (2.2a , b)

Here, g is the acceleration due to gravity, β the coefficient of thermal expansion,
K the permeability of the porous medium, α the thermal diffusivity and ν the
kinematic viscosity. The equations are non-dimensionalized using U∞, (µlU∞/K),∆T
and l as velocity, pressure, temperature and length scales, respectively, with µ being
the dynamic viscosity.

The following boundary conditions are prescribed. At C , there is no normal fluid
flow, so that

q · n = 0; (2.3)

here, n denotes the unit vector normal to C . In addition, the temperature is a
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prescribed function θC , so that

θ = θC(x, y), on C. (2.4)

As x2 + y2 →∞,

q → i, p→ −x, θ → 0, (2.5a–c)

where i denotes the unit vector in the x-direction. For later use, we also introduce the
non-dimensional local Nusselt number Nu, defined by

Nu = −
(
∂θ

∂n

)
n=0

, (2.6)

with the overall Nusselt number Nu, based on the total heat transfer at the body,

Nu =

∮
C

(
∂θ

∂n

)
n=0

ds. (2.7)

3. Analytical solution for the outer flow
In anticipation of the need to determine accurately the boundary conditions at

infinity for the purposes of the numerical solution to come, we consider first the
behaviour of the solution for the outer flow. Although our development has been
quite general so far, certain restrictions will be in order, as follows. First, we apply
Gauss’s theorem to (2.1b) over the region A lying between the curves C and C∞, as
shown in figure 1. A little manipulation gives

−
∮
C∞

ψ ds = −F −
∮
C∞

p dn+

(
Ra

Pe

∫ ∫
A

θ dA

)
j , (3.1)

where

F = Fxi + Fyj = −
∮
C

p dn (3.2)

is the total force on the body; here, s denotes the unit vector tangential to C and ψ
is the streamfunction defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (3.3)

with u and v being the velocity components in the x- and y-directions respectively.
To permit further asymptotic development, the body is taken to be symmetric, and
θ antisymmetric, about y = 0; this ensures that the area integral vanishes, and that
θ = 0 on y = 0 outside the curve C . Furthermore, the body is now a heat dipole,
and only the region y > 0 needs to be considered, although for the moment the
integrals along the entire length of C and C∞ will continue to be used, in order to
exploit the similarities with the analysis of Chang (1961) for a viscous (non-porous)
fluid. Introducing an artificial parameter ε, the following expansions for ε small are
proposed.

3.1. Outer expansion

In the outer region, the independent variables are assumed to be of the form

x̃ = εx, ỹ = εy, (3.4)
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so that equations (2.1a–c) become

∇ · q = 0, (3.5a)

q = −ε∇p+
Ra

Pe
θj , (3.5b)

q · ∇θ =
ε

Pe
∇2θ. (3.5c)

The expansions for the outer dependent variables are assumed to have the form

q = i + ε2q̃1 + o(ε2), (3.6a)

p = − x̃
ε

+ εp̃1 + o(ε), (3.6b)

θ = ε2θ̃1 + o(ε2). (3.6c)

3.2. Inner expansion

In the wake region, the independent variables are taken to be

x̄ = x̃, ȳ =
ỹ

ε1/2
= ε1/2y (3.7)

and the dependent variables

u, v̄ =
v

ε1/2
, p and θ. (3.8)

Expressed in inner variables, the governing equations (2.1a–c) transform to

∂u

∂x̄
+
∂v̄

∂ȳ
= 0, (3.9a)

u = −ε∂p
∂x̄
, (3.9b)

v̄ = −∂p
∂ȳ

+
Ra

Peε1/2
θ, (3.9c)

u
∂θ

∂x̄
+ v̄

∂θ

∂ȳ
=

1

Pe

(
ε
∂2θ

∂x̄2
+
∂2θ

∂ȳ2

)
. (3.9d)

The inner expansions for the dependent variables are assumed to have the form

u ∼ 1 + ε3/2u1 + o(ε3/2), (3.10a)

v̄ ∼ ε3/2v1 + o(ε3/2), (3.10b)

p ∼ − x̄
ε

+ ε1/2p1 + o(ε1/2), (3.10c)

θ ∼ εθ1 + o(ε). (3.10d)

3.3. Solution for the wake region

Considering the wake region first, (3.9a–d) reduce, at leading order, to

∂u1

∂x̄
+
∂v1

∂ȳ
= 0, (3.11a)

u1 = −∂p1

∂x̄
, (3.11b)



364 M. Vynnycky and I. Pop

0 = −∂p1

∂ȳ
+

Ra

Pe
θ1, (3.11c)

∂θ1

∂x̄
=

1

Pe

∂2θ1

∂ȳ2
, (3.11d)

where the boundary conditions for θ1 are θ1 = 0 on ȳ = 0 and θ1 → 0 as ȳ → ∞.
Before writing down the solution, we note here that multiplying (3.11) by ȳ and
integrating across the wake gives that

∫ ∞
0
ȳθ1dȳ (and hence

∫ ∞
0
yθdy) are conserved;

further, since y ∼ x1/2 in the wake, we have that θ should decay as 1/x there.
The appropriate solution to (3.11d) is then

θ1(x̄, ȳ) = Āȳx̄−3/2e−Peȳ
2/4x̄, (3.12)

which is a consequence of the fact that, for both porous medium and fluid, the velocity
field at infinity is a uniform stream. The constant Ā is related to the temperature field
by

Ā = − lim
x0→∞

x
1/2
0

2

∫ x0

−x0

(
∂θ

∂y

)
y=0

dx, (3.13)

which may be rewritten as

Ā = lim
x0→∞

x
1/2
0

2

(
Nu+ −

∫ X−

−x0

(
∂θ

∂y

)
y=0

dx−
∫ x0

X+

(
∂θ

∂y

)
y=0

dx

)
, (3.14)

where Nu+ is the overall Nusselt number based on the heat transfer at the upper
surface,

Nu+ = −
∫
C+

(
∂θ

∂n

)
n=0

dx, (3.15)

and X− and X+ are respectively the x-coordinates of the extreme left- and right-hand
endpoints of the body on y = 0. Equation (3.14) is obtained by considering the
integral of (2.1c) over a semi-circle of radius x0 centred at the origin, the upper part,
C+, of the curve C and the adjoining line segments between them. Note, incidentally,
that we should expect Ā 6= 0, even as x0 → ∞, a behaviour which runs counter to
that stated by Robertson et al. (1973); we return to this point in §4.2. Further, we put

ψ̃ = εψ, ψ̄ = ε1/2ψ (3.16)

for the outer and inner streamfunctions, and take the expansions

ψ̃ = ỹ + ε2ψ̃1 + o(ε2), (3.17a)

ψ̄ = ȳ + ε3/2ψ̄1 + o(ε3/2), (3.17b)

where ψ̃1 and ψ̄1 are defined according to (3.3). Now, cross-differentiating (3.11b, c)
to eliminate p1, we obtain

∂2ψ̄1

∂ȳ2
= −Ra

Pe

∂θ1

∂x̄
. (3.18)

The solution to (3.18), subject to the requirement that ψ̄1 is finite as ȳ → ∞ and
ψ̄1 = 0 on ȳ = 0, is

ψ̄1 = − Ra

Pe2
θ1, (3.19)
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with the pressure p1 given by

p1 =
2RaĀ

Pe2

e−Peȳ
2/4x̄

x̄1/2
. (3.20)

3.4. Solution external to the wake

Outside the wake region, from (3.5a–c) and (3.6a–c), it follows that, to leading order,

∇ · q̃1 = 0, (3.21a)

q̃1 = −∇p̃1 +
Ra

Pe
θ̃1j , (3.21b)

∂θ̃1

∂x̃
= 0. (3.21c)

Hence θ̃1 is constant along the lines ỹ =constant (the streamlines of the undisturbed
flow). Furthermore, since the temperature is zero at upstream infinity, it follows that
θ̃1 is zero. Thence, q̃1 is potential. Thus, equations (3.21a, b) give, after some algebra,

ψ̃1 =
C1ỹ

x̃2 + ỹ2
, p̃1 =

C1x̃

x̃2 + ỹ2
, (3.22a , b)

where C1 is a constant. To evaluate C1, we consider the momentum integral (3.1).
Introducing a non-dimensional tensor A, whose entries are

A11 = A22 = −p− x, A12 = −A12 = ψ − y,

and a vector streamfunction

G(Q) =

∫ Q

P

A dn,

G is made single-valued by slitting the plane along the positive x-axis; here P is a
given fixed point whose position is irrelevant, whereas Q is any other point in the
plane. Then,

F = G(x, 0+)− G(x, 0−) ≡ ∆G,

where equations equivalent to (4.37)–(4.39) from Chang (1961) hold, so that

∆G =

∮
C∞

p̃1 dn−
∮
C∞

ψ̃1 ds+

(∫ ∞
−∞
p1 dȳ

)
i. (3.23)

Inserting (3.20) and (3.22a,b) gives

Fx = 2πC1 +
4RaĀπ1/2

Pe5/2
, Fy = 0. (3.24a , b)

3.5. Composite solution

Finally, from the theory of composite expansions, summing the inner and outer
expansions gives the following leading-order far-field corrections for θ and ψ:

θ= 0, x < 0,

θ∼ Āyx−3/2e−Pey
2/4x + o(r−1/2), x > 0;

}
(3.25)
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and

ψ∼ y +
C1y

x2 + y2
+ o(r−1), x < 0,

ψ∼ y − Ra

Pe2
Āyx−3/2e−Pey

2/4x +
C1y

x2 + y2
+ o(r−1), x > 0.

 (3.26)

Equations (3.24a) and (3.26a, b) can be used to determine the constant C1 when the
heating body is either a flat plate or a circular cylinder, placed in a forced convection
flow (Ra = 0). With Ra = 0, we have for the first case the exact solution

ψ = y, p = −x, (3.27)

for the velocity and pressure fields, whence Fx = 0, so that C1 = 0 from (3.24a) in
agreement with (3.26). For a circular cylinder,

ψ =

(
r − 1

r

)
sinφ, p = −

(
r +

1

r

)
cosφ, (3.28)

which gives Fx = −2π, and thence C1 = −1, once again in agreement with (3.26);
here, (r, φ) denote polar coordinates.

4. Solutions for an isothermal finite flat plate
The foregoing is applied to the case of a flat plate lying at y = 0,−1/2 6 x 6 1/2.

In order to solve (2.1a–c) subject to boundary conditions (2.3)–(2.5) numerically, the
equations are rewritten in elliptic coordinates (ξ, η) using the transformation

x = 1
2

cosh ξ cos η, y = 1
2

sinh ξ sin η. (4.1)

Equations (2.1a–c) then become

∂2ψ

∂ξ2
+
∂2ψ

∂η2
= −Ra

Pe

(
s2
∂θ

∂η
− s1

∂θ

∂ξ

)
, (4.2a)

∂ψ

∂η

∂θ

∂ξ
− ∂ψ

∂ξ

∂θ

∂η
=

1

Pe

(
∂2θ

∂ξ2
+
∂2θ

∂η2

)
, (4.2b)

where

s1 = sinh ξ cos η, s2 = cosh ξ sin η,

J2(ξ, η) = 1
2

(cosh 2ξ − cos 2η) .

}
(4.3)

The velocity components are given in these coordinates by

u =
2

J2

(
s2
∂ψ

∂ξ
+ s1

∂ψ

∂η

)
, v =

2

J2

(
s1
∂ψ

∂ξ
− s2

∂ψ

∂η

)
. (4.4a , b)

Furthermore, the plate is located at ξ = 0, and the remaining portions of the x-axis
(|x| > 1/2, y = 0) are given by η = 0(x > 1/2) and η = π(x < −1/2). We consider
an isothermal plate, so that in (2.4) we set θC ≡ 1. Thus the boundary conditions
(2.3)–(2.5) become

ψ = 0, θ = 0 on η = 0, π, ξ > 0, (4.5a , b)

ψ = 0, θ = 1 on ξ = 0, 0 6 η 6 π, (4.6a , b)



Mixed convection in a porous medium 367

with the conditions at infinity given by

θ = 0, π/2 6 η 6 π, ξ →∞
θ ∼ Āyx−3/2e−Pey

2/4x + o(r−
1
2 ), 0 6 η < π/2, ξ →∞,

}
(4.7)

and

ψ ∼ y +
C1y

x2 + y2
+ o(r−1), π/2 6 η 6 π, ξ →∞

ψ ∼ y − Ra

Pe2
Āyx−3/2e−Pey

2/4x +
C1y

x2 + y2
+ o(r−1), 0 6 η < π/2, ξ →∞.

 (4.8)

In these coordinates, the non-dimensional local Nusselt number on the upper side of
the plate, Nu+, is

Nu+ = − 2

sin ξ

(
∂θ

∂ξ

)
ξ=0

, (4.9)

with the overall Nusselt number Nu+,

Nu+ =

∫ π

0

(
∂θ

∂ξ

)
ξ=0

dη. (4.10)

To determine the constants C1 and Ā, note first that for this geometry Fx = 0 even
when Ra 6= 0, because the integral in p at the plate surface in (3.1) vanishes, so that

C1 = − 2RaĀ

Pe5/2π1/2
. (4.11)

Ā itself, however, poses greater difficulties. Consideration of the closed-form solution
of (2.1a–c) that is available when Ra = 0 for arbitrary Pe (see the Appendix for
details) indicates, from the behaviour of the modified Bessel function K1, that

∂θ

∂y
∼ 1

π(x+ 1
2
)

as x ↓ − 1
2
, (4.12a)

∂θ

∂y
∼ 1

π( 1
2
− x)

as x ↑ 1
2
, (4.12b)

so that Nu+, as defined by (4.9), is non-integrable; furthermore, since the boundary
conditions for θ are discontinuous at x = ∓1/2 respectively, we may expect this
situation to persist for Ra 6= 0, and it is worth exploring, at least heuristically, the
nature of the singularities in this case.

Introducing an artificial parameter γ(� 1), we consider, without loss of generality,
the point at (1/2, 0). Using rescaled Cartesian coordinates (X,Y ) centred on this
point, which are related to (x, y) by

x = 1
2

+ γX, y = γY ,

the governing equations reduce locally to

∂2ψ

∂X2
+
∂2ψ

∂Y 2
= −γRa

Pe

∂θ

∂X
, (4.13a)

∂ψ

∂Y

∂θ

∂X
− ∂ψ

∂Y

∂θ

∂X
=

1

Pe

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (4.13b)

In view of the boundary conditions on θ on Y = 0, it is clear that we require θ ∼ 1,
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in which case we must have either ψ ∼ γ or ψ ∼ 1. In the first case, we arrive at just
the conduction equation for θ, so that

θ ∼ 1

π
tan−1

(
Y

X

)
, (4.14)

whilst the second case gives

ψ ∼ Y , (4.15a)

∂θ

∂X
∼ 1

Pe

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (4.15b)

In either case, the key feature is that

∂θ

∂Y
∼ 1

πX
near X = 0,

so that the singularity in heat flux depends neither on Ra nor on Pe. Consequently, it
is possible to take account of the singularity analytically by decomposing θ(≡ θs +θf)
into the sum of a component (θs) whose derivative with respect to y has a singularity
near x = ∓1/2, and whose integral along the x-axis will have a principal value, and a
second component (θf) which is free of singularities and is integrable in the ordinary
sense. For θs we can either choose a linear sum of terms which have the form (4.14),
or the forced convection solution (A 5); we have chosen the latter. The prescription
for Ā given by (3.14) now contains a principal-value integral, in the form

Ā = − lim
x0→∞

x
1/2
0

2

∫ x0

−x0

−
(
∂θ

∂y

)
y=0

dx; (4.16)

moreover, heat balance considerations when Ra = 0 give∫ ∞
−∞
−

(
∂θs

∂y

)
y=0

dx = 0, (4.17)

so that (4.16) becomes, on manipulating (3.14),

Ā = lim
x0→∞

x
1/2
0

2

(∫ ∞
x0

(
∂θs

∂y

)
y=0

dx+

∫ −x0

−∞

(
∂θs

∂y

)
y=0

dx−
∫ x0

−x0

(
∂θf

∂y

)
y=0

dx

)
,

(4.18)
which consists of well-behaved integrals only.

4.1. Details of the numerical method

With these modifications, (4.2a, b) for ψ and θf , subject to the boundary conditions
(4.6)–(4.8), were solved numerically in the (η, ξ)-plane using a control-volume ap-
proach for the heat equation (Patankar 1980) and regular five-point differencing for
the streamfunction equation; the resulting equations were swept over simultaneously
and solved using Gauss–Seidel iteration with a convergence criterion given by

max
i,j

(
|ψ(m)

i,j − ψ
(m−1)
i,j |, |θ(m)

i,j − θ
(m−1)
i,j |

)
< 10−8,

where m denotes the iteration order, and i and j are indices over η and ξ, respectively.
In general, relaxation parameters of 1.8 and 0.7 were used for (4.2a, b) respectively,
and all calculations required of the order of a few minutes on a Cray Supercomputer.
Note, incidentally, that the technique employed is a modification of one that has been
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Pe = 5 Pe = 10 Pe = 50

Cheng (1977) 2.523 3.568 7.977
Prasad et al. (1988) 2.792 3.803 8.376

Present

61× 120 2.642 3.654 7.992
91× 120 2.642 3.654 7.994
91× 150 2.642 3.654 8.003

Table 1. Comparison of Nu+ values for Ra = 0 (zero heat flux for |x| > 1/2)

often used in recent years in conjugate heat transfer problems by Kimura & Pop
(1992, 1993, 1994) and Vynnycky & Kimura (1994, 1995, 1996), the novel features
here being the treatment of the singularities at the plate endpoints and the coupling
of the inner flow with the boundary conditions at infinity. In particular, the outer
boundary conditions were set, using (4.7) and (4.8) at a finite distance from the body,
as indicated in the next paragraph; furthermore, since these outer conditions contain
constants which depend on the solution near the surface of the body, the conditions
themselves were updated, via (4.11) and (4.18), after each sweep as soon as the latest
values for the flow variables became known.

To check our numerical method, we first set Ra = 0 to obtain converged solutions
in the forced convection limit for a range of values of Pe; for these computations, we
set the outer boundary conditions at ξ∞ = cosh−1(2x∞), with x∞ = 23.2, and solved
for θ and ψ, whereas for the later Ra 6= 0 computations, we solved for ψ − y and
θf(= θ − θs). Next, we replaced boundary condition (4.5b) with a zero flux condition
in order to compare with results available in the literature (Cheng 1977; Prasad et al.
1988); the comparison is given in terms of Nu+ in table 1 for a set of three Pe
values and uniform meshes and indicates that our results satisfactorily fall between
values obtained earlier. The comparison in terms of Nu+ in this case is unambiguous,
incidentally, because the singularities in Nu+ at x = ∓1/2 are of the form (x±1/2)−1/2

and hence integrable, as can be shown using Wiener–Hopf techniques (cf. Carrier,
Crook & Pearson 1983, p. 376). Furthermore, we note that Cheng’s (1977) similarity
solution for forced convection on an isothermal horizontal surface,

θ(X,Y ) = erfc

(
Y

X1/2

)
, (4.19)

where Y = Pe1/2y,X = x+ 1
2
, is in fact the high-Pe limit of the formulation with zero

heat flux for |x| > 1/2, but not of that with zero temperature for |x| > 1/2.
Adopting the convention that Ra > 0 denotes a heated plate, and Ra < 0 a cooled

plate, we proceed to a discussion for Ra 6= 0. Preliminary computations were carried
out for 1 6 Pe 6 100, |Ra| 6 103 in order to ascertain the range over which the
results of the numerical method would be valid. For instance, it is already known
(Robertson et al. 1973) that in the computation of mixed convective flows for the
case of a cooled plate immersed in a Newtonian fluid, the buoyancy force exerts a
significant influence on the uniform flow boundary conditions at upstream infinity if
x∞ is not taken sufficiently large; on the other hand, the validity of the downstream
infinity boundary conditions is in doubt when the plate is heated if Ra/Pe is too great
(Prasad et al. 1988). Furthermore, the energy-balance method that is usually invoked
to verify that the obtained numerical solution conserves heat runs into an ambiguity,
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as follows. Applying the divergence theorem to (4.2b), we arrive at

1

Pe

(∫ π

0

(
∂θf

∂ξ

)
ξ=0

dη ± I(x∞)

)
= −

∫ π

0

(
θ
∂ψ

∂η
− 1

Pe

∂θ

∂ξ

)
ξ=ξ∞

dη

+
1

Pe

(∫ ξ∞

0

(
∂θf

∂η

)
η= π

2

dξ −
∫ ξ∞

0

(
∂θf

∂η

)
η=0

dξ

)
, (4.20)

where

I(x∞) =
2

π

(
cosh 1

2
Pe(x∞ + 1

2
)− cosh 1

2
Pe(x∞ − 1

2
)− 2

∫ Pe/2(x∞+1/2)

Pe/2(x∞−1/2)

K0(s) sinh s ds

)
(4.21)

denotes the value of the principal-value integral. However, it does not appear possible
to calculate a percentage difference in energy based on the energy lost at the plate
and the heat removed elsewhere plus that carried away downstream, since this would
involve splitting up the integral of (∂θs/∂y)y=0. It was found, however, that the
rearrangement shown in (4.20) gave a percentage difference of 2% or less for Pe > 5,
although, in view of this arbitrariness, we chose not to rule out solutions for Pe = 1
for which this nominal difference was as high as 10%. Subsequently, all computations
were carried out on the 91 × 150 mesh (the first quantity here denoting the number
of points in the η-direction) using x∞ = 23.2.

4.2. Effect of Ra and Pe on flow structure

Numerical solutions were obtained for Pe = 1, 5, 10, 50, 100, although not in all
cases were we able to obtain solutions for |Ra| = 103. Figure 2 for Pe = 5 is typical
of the streamline and isotherm plots that were obtained as the value of Ra/Pe
was increased from negative to positive values. Figure 2(d) represents pure forced
convection, whereas figure 2(e) for Ra/Pe = 10 illustrates an acceleration of the flow
near the plate, as evidenced by the clustering of streamlines and the displacement of
isotherms further downstream in figure 2(e). An additional feature here, not reported
for the corresponding problem in a Newtonian fluid (Robertson et al. 1973), is the
appearance of a separation bubble towards the trailing edge of the plate which
reattaches to the x-axis further downstream beyond the trailing edge. This appears
when Ra/Pe > 0, but is still not so large that the magnitude of the buoyancy force
wrecks the uniform-stream assumption at downstream infinity; in fact, for Pe = 5,
we were unable to obtain converged solutions for Ra much greater than 50. For
Ra/Pe < 0, the gravitationally induced streamwise pressure gradient produces a
deceleration of the flow near the plate, to the extent that the flow separates and a
recirculating eddy, whose length increases with −Ra/Pe, forms. Whilst the location
of the leading edge of the eddy continues to move upstream as −Ra/Pe increases,
the position of the eddy’s trailing edge was noted to move downstream, but never
to exceed x = 0. In addition, figure 3(a–c) indicates the extent to which the flow
has been decelerated by comparison with figure 3(d) in that the isotherms have been
compressed to lie within an ever smaller vicinity of the plate.

The effect of Ra and Ra/Pe on local heat transfer at the plate is shown in figures 3(a)
and 3(b) for Pe = 5 and 100 respectively; to facilitate comparison, we have taken
|Nu+| for the y-axis. In comparing the two plots, we note the development of a thermal
boundary layer as Pe increases for Ra = 0, with a corresponding rise in Nu+ values
and increase in the asymmetry of the Nu+ profile about x = 0; consequently, the
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(a)

(b)

(c)

(d)

(e)

Figure 2. Streamlines, 0 6 ψ 6 5 (∆ψ = 0.5) (left-hand plots), and isotherms, 0 6 θ 6 1
(∆θ = 0.1) (right-hand plots) for Pe = 5: (a) Ra/Pe = −200; (b) Ra/Pe = −100; (c) Ra/Pe = −50;
(d) Ra/Pe = 0; (e) Ra/Pe = 10. Ticks mark the leading and trailing edges of the plate at x = ±1/2,
respectively; identical scales are used for both x- and y-directions.

sharp rise in Nu+ near the trailing edge, as a result of the approaching discontinuity
in the boundary condition, is more pronounced for the higher value of Pe. A more
significant feature of note, which is more evident in figure 3(a) than in figure 3(b), is
that for some negative values of Ra/Pe, the heat flux towards the plate is higher than
for the pure forced convection solution. For −Ra very large and positive, this is not
surprising since it implies that the heat transfer as a result of natural convection is
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Figure 3. Nu+ as a function of length along the plate for a selection of Ra/Pe values at
(a) Pe = 5, (b) Pe = 100.

now more effective than that due to forced convection for that value of Pe. However,
it is apparent from figure 3(a) that this situation persists even for −Ra as low as 250,
which is perhaps surprising in view of the general discussion on flow deceleration for
negative Ra. On closer inspection, though, we do in fact observe flow deceleration
in the vicinity of the leading edge, as evidenced by the lower values of Nu+, by
comparison with the Ra = 0 solution. Furthermore, we note that even though the
plate is being cooled, the trailing edge nevertheless serves to accelerate the flow there
(since locally ∂θ/∂x > 0); therefore, it appears that this effect, in addition to the
forced flow, maintains the value of Nu+ at a greater value for Ra < 0 than Ra = 0 for
a major portion of the plate. For Ra > 0, which is thought of as the flow-accelerating
case, one might therefore be surprised to see Nu+ lower than for Ra = 0, as is the
case for Ra/Pe = 10 in figure 3(a) in the vicinity of the trailing edge; however, a
consideration of the local flow behaviour at different points of the plate, along the
same lines as for Ra < 0, indicates this picture to be correct.

The flow development for a wide range of Ra and Pe values is illustrated in terms
of the constant Ā in figure 4; for computing Ā, we have taken x0 = x∞ in (3.13). Since
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Figure 4. Ā as a function of Ra/Pe for Pe = 1, 10 and 100 for x0(= x∞) = 23.2.

Ā may be thought of as the excess heat that is carried to downstream infinity, we may
note from this figure how, for Ra > 0, convection increases as Ra increases, whilst for
Ra < 0, less heat is convected downstream for moderate values of Ra/Pe than for
the forced convection solution. For all three values of Ra/Pe, however, Ā has a local
minimum, indicating that for sufficiently great cooling (that is, Ra large and negative)
there is an increase in heat transfer to the downstream wake; it appears that as the
recirculation becomes sufficiently strong, this effect interacts with the forced flow to
produce enhanced heat flow to the wake. An important point to emphasize here is
that Ā does not tend to zero as x0 →∞, a conclusion which is opposite to that reached
by Robertson et al. (1973); however, they did not present any computed values for
Ā, which in their notation is A. In the present case, it is possible to determine for
Ra = 0, using the solution in the Appendix and the asymptotic behaviour of the
modified Bessel functions at infinity, that

lim
x0→∞

Ā =
1

2

(
Pe

π

)1/2

. (4.22)

Further computations were carried out for Ra = 0, Pe = 5, 50 using a 91× 150 mesh
with x∞ = 29.0 and 34.8 to see if the appropriate trend could be obtained; the results
are tabulated in table 2. For both values of Pe, the computed Ā for these values of x∞
overestimates the analytical value by around 10%, with the appropriate asymptotic
trend being more apparent only for the lower value of Pe. We would presume that
a finer mesh and yet larger values of x∞ would remedy this, although we have not
pursued this here. As regards the statement that Ā should not tend to zero for any
combination of Ra and Pe, we note that, since it is clear that this is the case when
Ra = 0, there appears no reason to suppose that it would not hold also for Ra 6= 0.

Figure 5 concentrates on the Ra < 0 regime and documents the increase of the
eddy length, L, with the value of Ra/Pe for different Pe values. We carried out
additional computations for the region near Ra/Pe = 0 in order to ascertain whether
eddies are formed for all Ra < 0, or whether there is a critical value above which the
flow is completely attached. Although not evident from the figure, we noted that for
Pe = 1, an eddy is formed provided Ra/Pe < −0.8. From the computations that were
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x∞ = 23.2 x∞ = 29.0 x∞ = 34.8 analytical

Pe = 5 0.737 0.713 0.691 0.631
Pe = 50 2.278 2.285 2.288 1.995

Table 2. Comparison of Ā values for Ra = 0 for different values of x∞, using a 91× 150 mesh

Ra/Pe

5

4

2

0
–100 –80 0

L

Pe=1
Pe=10
Pe=50
Equation (5.6)

–60 –40 –20

3

1

Figure 5. Comparison of eddy length, L, as function of Ra/Pe
for Pe = 1, 10 and 50, with equation (5.6).

carried out for Pe = 5, 10, 50 and 100, it appears that the critical value for Ra/Pe
is monotonically decreasing with Pe; for example, for Pe = 100, it was found that
Ra/Pe is about −1.25. A further point here is that the leading edge of the eddy was
always found to be ahead of the leading edge of the plate; this observation differs
from that for a Newtonian fluid flow (Robertson et al. 1973), where separation and
rettachment points for high enough values of the relevant dimensionless parameter
(in that case Gr/Re2, where Gr denotes the Grashof number, and Re the Reynolds
number) are both at the plate surface. These issues are discussed further in the next
section.

5. Discussion
Robertson et al. (1973) provided time-dependent computations to elucidate the

mechanism for mixed convection flow separation of a viscous fluid over a short hori-
zontal flat plate. Here, however, a mathematical explanation as to why a recirculating
eddy appears for the porous media flow may be derived by considering a simplified
time-independent heuristic model. It is clear that θ on y = 0 is essentially the linear
sum of two Heaviside functions, so that ∂θ/θx consists of Dirac delta functions,
±δ(x), at x = ∓ 1

2
. Since θ is antisymmetric in y, the ∂θ/θx term on y = 0 may be

thought of as the linear sum of equal and opposite vortex doublets at x = ∓1/2, each
of unit strength. Furthermore, we approximate the temperature field by the contri-
bution of these doublets, so that the modified problem, reminiscent of inviscid flow
theory, consists of solving for the streamfunction due to a uniform flow at infinity



Mixed convection in a porous medium 375

and two vortex doublets; mathematically, this is expressible by

∇2ψ = − Ra

πPe

(
y

(x+ 1
2
)2 + y2

− y

(x− 1
2
)2 + y2

)
, (5.1)

subject to

ψ = 0 on y = 0, (5.2a)

ψ → y as y →∞. (5.2b)

This is readily solved to give

ψ(x, y) = y

(
1− Ra

4πPe
log

[
(x+ 1

2
)2 + y2

(x− 1
2
)2 + y2

])
; (5.3)

a contour plot of ψ (not included here) indicates qualitative agreement for the
streamfunction with the full equations, with the formation of an eddy which separates
at the plate and reattaches downstream if Ra > 0, and reattaches at the plate having
already separated upstream for Ra < 0. In particular, denoting by xS and xR the
separation and reattachment positions respectively, elementary manipulation gives

xS =

{
1
2

coth(πPe/Ra) if Ra < 0,
1
2

tanh(πPe/Ra) if Ra > 0,
(5.4)

xR =

{
1
2

tanh(πPe/Ra) if Ra < 0,
1
2

coth(πPe/Ra) if Ra > 0,
(5.5)

with the eddy length given by

L = 1
2

(
coth(πPe/|Ra|)− tanh(πPe/|Ra|)

)
. (5.6)

This curve has been plotted in figure 5; as one might have expected, quantitative
agreement has been obtained only for small values of Ra/Pe and Pe, which is not
surprising in view of the fact that the model ignores the boundary layer that is present
for larger values of Ra and Pe. However, whilst these considerations are unable to
say anything about, for example, the critical Ra/Pe number necessary for separation,
they do mimic the fact that −1/2 < xR < 0 and xS < −1/2 for Ra < 0, as well
as providing the qualitative behaviour of the eddy length as a function of Pe and
Ra; for Ra > 0, they indicate that 0 < xS < 1/2 and xR > 1/2, as well as showing
the trend that we might have expected to see had we been able to obtain numerical
solutions for higher values of Ra – a task which would presumably be possible by
taking yet higher values of x∞. In summary, therefore, it appears that the mechanism
for separation of the porous medium flow is essentially the high temperature gradients
at the plate edges.

6. Conclusion
In this paper, we have analysed steady mixed convection flow over a hot or

cold finite horizontal flat plate embedded in a fluid-saturated porous medium. The
methodology used has followed the traditional analytical–numerical approach to
supply accurate results. First, based on the Darcy–Boussinesq approximation, the
governing equations were given in non-dimensional form for an arbitrary body
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shape. Then, an analytical solution was developed for the case when the body is
symmetric, and the temperature field antisymmetric, about the horizontal axis. The
resulting inner and outer composite solution was verified with the exact solution
for the forced convection limit (Ra = 0) when the body is either a flat plate or
a circular cylinder. In the rest of the paper, attention was focused on the case
of a finite horizontal flat plate; detailed numerical solutions to the full govern-
ing equations were obtained by transforming to elliptical coordinates (ξ, η), defined
by (4.1), and using a finite-difference scheme. Results were found for the range
1 6 Pe 6 100, |Ra| 6 103. All the results were checked for accuracy very care-
fully by varying the grid size. Numerical results were also compared (see table 1)
with those of Cheng (1977) and Prasad et al. (1988) for a similar problem in the
forced convection limit, and found to agree well, particularly for large values of
Pe.

Perhaps the most significant result for the present problem is the formation of
separation eddies for both heating and cooling cases and high enough values of
Ra. For Ra/Pe > 0, the flow accelerates near the plate, and a separation bubble
appears towards the trailing edge, which reattaches to the x-axis further downstream.
For Ra/Pe < 0, we found that the buoyancy-induced streamwise pressure gradient
also causes the flow to separate, and a recirculating eddy develops adjacent to the
plate surface. For Pe = 1, this eddy forms for Ra/Pe < −0.8, while for Pe = 100,
Ra/Pe < −1.25; further computations for 1 6 Pe 6 100 indicated that the critical
value of Ra/Pe is monotonically decreasing with Pe. An additional point here is that
the leading edge of the eddy was always found to be ahead of the leading edge of
the plate, a result which differs from that for a viscous (non-porous) medium (see
Robertson et al. 1973). Furthermore, there are several indications why it is unlikely
that the appearance of the separating eddies would be a numerical artefact of the
implementation of the chosen boundary conditions. The appearance of reverse flow as
|Ra|/Pe increases in fact seems quite natural, especially in the absence of fluid inertia,
because the pressure force due to buoyancy increases in magnitude and opposes the
forced flow (over the plate when Ra < 0 and downstream of the plate when Ra > 0).
Note that separation in porous media mixed convection has been reported elsewhere
(Pop, Lesnic & Ingham 1995), albeit for a different flow configuration.

It is worth, in conclusion, considering the use of elliptical coordinates in this work
in the wider context of boundary-layer theory in porous media. The advantage of
these coordinates is that the region near the plate is effectively magnified, particularly
the singular regions near the ends of the plate. In this respect, we mention also
that Rees & Bassom (1991) provided a method for studying free convection from a
vertical or horizontal semi-infinite surface buried in a porous medium using parabolic
coordinates; in that case, the full nonlinear governing equations were reduced to a
set of ordinary differential equations which are, in fact, identical to those found by
Cheng & Minkowycz (1977) and Cheng & Chang (1976).

A considerable qualitative difference has now been found to exist between buoyancy-
induced flows from a short vertical and a horizontal surface placed in a fluid-saturated
porous medium. An interesting extension to these problems, of some importance, is
to determine how their dissimilar flow characteristics can be reconciled by examining
the buoyancy-induced flow along an inclined short flat plate embedded in a porous
medium, using the same procedure as that adopted for the present configuration.

The authors wish to thank the referees for their comments on an earlier version of
the paper. M.V. gratefully acknowledges the financial support of the European Union.
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Appendix. Solution for forced convection (Ra = 0)
When Ra = 0, ψ ≡ y, so that the steady heat equation reduces to

∂θ

∂x
=

1

Pe

(
∂2θ

∂x2
+
∂2θ

∂y2

)
, (A 1)

subject to

θ = 0 on y = 0, |x| > 1
2
, (A 2a)

θ = 1 on y = 0, |x| 6 1
2
, (A 2b)

θ → 0 as (x2 + y2)1/2 →∞. (A 2c)

To proceed to a closed-form solution for θ, writing θ(x, y) = eλxF(x, y), where λ =
Pe/2, yields a Helmholtz equation for F ,

∂2F

∂x2
+
∂2F

∂y2
= λ2F, (A 3)

subject to

F = 0 on y = 0, |x| > 1
2
, (A 4a)

F = e−λx on y = 0, |x| 6 1
2
, (A 4b)

F → 0 as (x2 + y2)1/2 →∞. (A 4c)

Equation (A 3), subject to (A 4a–c) is solved by the method of Fourier transforms to
give

θ(x, y) =
eλx

π

∫ ∞
−∞

sinh 1
2

(λ+ is) e−(λ2+s2)1/2y+isx

λ+ is
ds, (A 5)

which is easily shown to be real. A little more manipulation gives the results necessary
for § 4.1:

− π

λ

(
∂θ

∂y

)
y=0

=



ex+ [K0(−x+)−K1(−x+)]
−ex− [K0(−x−)−K1(−x−)] if x < − 1

2
,

ex+ [K0(x+) +K1(x+)]
−ex− [K0(−x−)−K1(−x−)] if − 1

2
< x < 1

2
,

ex+ [K0(x+) +K1(x+)]
−ex− [K0(x−) +K1(x−)] if x > 1

2
,

(A 6)

where

x+ = λ(x+ 1
2
) and x− = λ(x+ 1

2
),

and K0 and K1 are the modified Bessel functions.
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